82 research outputs found

    Do viruses use vectors to penetrate mucus barriers?

    Get PDF
    I propose a mechanism by which viruses successfully infect new individuals, despite being immotile particles with no ability for directed movement. Within cells, viral particle movements are directed by motors and elements of the cytoskeleton, but how viruses cross extracellular barriers, like mucus, remains a mystery. I propose that viruses cross these barriers by hitch-hiking on bacteria or sperm cells which can transport themselves across mucosal layers designed to protect the underlying cells from pathogen attack. An important implication of this hypothesis is that agents that block interactions between viruses and bacteria or sperm may be new tools for disease prevention.National Institute of Mental Health (U.S.) (grant P50 GM068763-06

    Biological hydrogels as selective diffusion barriers

    Get PDF
    The controlled exchange of molecules between organelles, cells, or organisms and their environment is crucial for life. Biological gels such as mucus, the extracellular matrix (ECM), and the biopolymer barrier within the nuclear pore are well suited to achieve such a selective exchange, allowing passage of particular molecules while rejecting many others. Although hydrogel-based filters are integral parts of biology, clear concepts of how their barrier function is controlled at a microscopic level are still missing. We summarize here our current understanding of how selective filtering is established by different biopolymer-based hydrogels. We ask if the modulation of microscopic particle transport in biological hydrogels is based on a generic filtering principle which employs biochemical/biophysical interactions with the filtered molecules rather than size-exclusion effects.National Institutes of Health (U.S.) (Grant P50GM068763)MIT Start-up FundsGerman Academic Exchange Service (Postdoctoral Fellowship

    Meiotic Spindle: Sculpted by Severing

    Get PDF
    Katanin is a conserved AAA ATPase with the ability to sever microtubules, but its biological function in animal cells has been obscure. A recent study using electron tomography has found that katanin stimulates the production of microtubules in the meiotic spindles of Caenorhabditis elegans oocytes

    Charge as a Selection Criterion for Translocation through the Nuclear Pore Complex

    Get PDF
    Nuclear pore complexes (NPCs) are highly selective filters that control the exchange of material between nucleus and cytoplasm. The principles that govern selective filtering by NPCs are not fully understood. Previous studies find that cellular proteins capable of fast translocation through NPCs (transport receptors) are characterized by a high proportion of hydrophobic surface regions. Our analysis finds that transport receptors and their complexes are also highly negatively charged. Moreover, NPC components that constitute the permeability barrier are positively charged. We estimate that electrostatic interactions between a transport receptor and the NPC result in an energy gain of several kBT, which would enable significantly increased translocation rates of transport receptors relative to other cellular proteins. We suggest that negative charge is an essential criterion for selective passage through the NPC.Merck Research LaboratoriesNational Science Foundation (U.S.) (Division of Mathematical Sciences)Kavli Institute for Bionano Science & Technology at Harvard UniversityNational Centers for Systems Biology (U.S.) (NIGMS grant GM068763)National Institute of General Medical Sciences (U.S.

    Enhanced diffusion by binding to the crosslinks of a polymer gel

    Get PDF
    Creating a selective gel that filters particles based on their interactions is a major goal of nanotechnology, with far-reaching implications from drug delivery to controlling assembly pathways. However, this is particularly difficult when the particles are larger than the gel’s characteristic mesh size because such particles cannot passively pass through the gel. Thus, filtering requires the interacting particles to transiently reorganize the gel’s internal structure. While significant advances, e.g., in DNA engineering, have enabled the design of nano-materials with programmable interactions, it is not clear what physical principles such a designer gel could exploit to achieve selective permeability. We present an equilibrium mechanism where crosslink binding dynamics are affected by interacting particles such that particle diffusion is enhanced. In addition to revealing specific design rules for manufacturing selective gels, our results have the potential to explain the origin of selective permeability in certain biological materials, including the nuclear pore complex.National Science Foundation (U.S.) (through Harvard Materials Research Science and Engineering Center Grant DMR-1420570)National Science Foundation (U.S.). Designing Materials to Revolutionize and engineer our Future (Grant DMR-123869)United States. Office of Naval Research (Grant N00014-17-1-3029)National Institutes of Health (U.S.). National Institute for Biomedical Imaging and Bioengineering (Grant R01 EB017755-04)National Science Foundation (U.S.). Career Award (PHY-1454673)National Science Foundation (U.S.). Materials Research Science and Engineering Centers (Program) (DMR-1419807

    An adsorption chromatography assay to probe bulk particle transport through hydrogels

    Get PDF
    Biopolymer-based hydrogels such as mucus and the basal lamina play a key role in biology, where they control the exchange of material between different compartments. They also pose a barrier that needs to be overcome for successful drug delivery. Characterizing the permeability properties of such hydrogels is mandatory for the development of suitable drug delivery vectors and pharmaceutics. Here, we present an experimental method to measure bulk particle transport through hydrogels. We validate our assay by applying it to mucin hydrogels and show that the permeability properties of these mucin hydrogels can be modulated by polymer density and pH, in agreement with previous results obtained from single particle tracking. The method we present here is easy to handle, inexpensive, and high-throughput compatible. It is also a suitable platform for the design and screening of drugs that aim at modifying the barrier properties of hydrogels. This system can also aid in the characterization and development of synthetic gels for a range of biomedical applications.National Institutes of Health (U.S.) (Grant P50-GM068763)National Institutes of Health (U.S.) (Grant P30-ES002109

    Zebrafish as a model to study live mucus physiology

    Get PDF
    Dysfunctional mucus barriers can result in important pulmonary and gastrointestinal conditions, but model systems to study the underlying causes are largely missing. We identified and characterized five mucin homologues in zebrafish, and demonstrated a strategy for fluorescence labeling of one selected mucin. These tools can be used for in vivo experiments and in pharmacological and genetic screens to study the dynamics and mechanisms of mucosal physiology.National Institute of Environmental Health Sciences (Grant P30-ES002109)Johnson & Johnson. Corporate Office of Science and TechnologyNational Institutes of Health (U.S.) (Grant CA106416)Kathy and Curt Marble Cancer Research FundDavid H. Koch Institute for Integrative Cancer Research at MIT (Zebrafish Core Facility

    Cell Patterning with Mucin Biopolymers

    Get PDF
    The precise spatial control of cell adhesion to surfaces is an endeavor that has enabled discoveries in cell biology and new possibilities in tissue engineering. The generation of cell-repellent surfaces currently requires advanced chemistry techniques and could be simplified. Here we show that mucins, glycoproteins of high structural and chemical complexity, spontaneously adsorb on hydrophobic substrates to form coatings that prevent the surface adhesion of mammalian epithelial cells, fibroblasts, and myoblasts. These mucin coatings can be patterned with micrometer precision using a microfluidic device, and are stable enough to support myoblast differentiation over seven days. Moreover, our data indicate that the cell-repellent effect is dependent on mucin-associated glycans because their removal results in a loss of effective cell-repulsion. Last, we show that a critical surface density of mucins, which is required to achieve cell-repulsion, is efficiently obtained on hydrophobic surfaces, but not on hydrophilic glass surfaces. However, this limitation can be overcome by coating glass with hydrophobic fluorosilane. We conclude that mucin biopolymers are attractive candidates to control cell adhesion on surfaces.European Commission (Marie Curie International Outgoing Fellowship for Career Development, β€œBIOMUC”)National Institutes of Health (U.S.) (NIH Grant 1R01GM100473)National Science Foundation (U.S.) (award number DMR-819762)National Science Foundation (U.S.) (NSF Grant OCE-0744641-CAREER)National Science Foundation (U.S.) (Award DMR-0819762)Samsung Scholarship FoundationMassachusetts Institute of Technology (Startup funds)Massachusetts Institute of Technology (Junior Faculty award

    A Role for NuSAP in Linking Microtubules to Mitotic Chromosomes

    Get PDF
    SummaryThe spindle apparatus is a microtubule (MT)-based machinery that attaches to and segregates the chromosomes during mitosis and meiosis. Self-organization of the spindle around chromatin involves the assembly of MTs, their attachment to the chromosomes, and their organization into a bipolar array. One regulator of spindle self-organization is RanGTP. RanGTP is generated at chromatin and activates a set of soluble, Ran-regulated spindle factors such as TPX2, NuMA, and NuSAP [1]. How the spindle factors direct and attach MTs to the chromosomes are key open questions. Nucleolar and Spindle-Associated Protein (NuSAP) was recently identified as an essential MT-stabilizing and bundling protein that is enriched at the central part of the spindle [2, 3]. Here, we show by biochemical reconstitution that NuSAP efficiently adsorbs to isolated chromatin and DNA and that it can directly produce and retain high concentrations of MTs in the immediate vicinity of chromatin or DNA. Moreover, our data reveal that NuSAP-chromatin interaction is subject to Ran regulation and can be suppressed by Importin Ξ± (ImpΞ±) and Imp7. We propose that the presence of MT binding agents such as NuSAP, which can be directly immobilized on chromatin, are critical for targeting MT production to vertebrate chromosomes during spindle self-organization
    • …
    corecore